score:16

Edit 2:

While thinking about the `cataX` method, I figured out that `cataX` is nothing else than a plain and simple fold. Using that, we can get a pure scala solution without any additional libraries.

So, here it is:

``````( (amt /: floor)(_ max _) /: cap)(_ min _)
``````

which is the same as

``````cap.foldLeft( floor.foldLeft(amt)(_ max _) )(_ min _)
``````

(not that this is necessarily easier to understand).

I think you can’t have it any shorter than that.

For better or worse, we can also solve it using scalaz:

``````floor.map(amt max).getOrElse(amt) |> (m => cap.map(m min).getOrElse(m))
``````

or even:

``````floor.cata(amt max, amt) |> (m => cap.cata(m min, m))
``````

As a ‘normal’ Scala programmer, one might not know about the special Scalaz operators and methods used (`|>` and `Option.cata`). They work as follows:

`value |> function` translates to `function(value)` and thus `amt |> (m => v fun m)` is equal to `v fun amt`.

`opt.cata(fun, v)` translates to

``````opt match {
case Some(value) => fun(value)
case None => v
}
``````

or `opt.map(fun).getOrElse(v)`.

See the Scalaz definitions for `cata` and `|>`.

A more symmetric solution would be:

``````amt |> (m => floor.cata(m max, m)) |> (m => cap.cata(m min, m))
``````

Edit: Sorry, it’s getting weird now, but I wanted to have a point-free version as well. The new `cataX` is curried. The first parameter takes a binary function; the second is a value.

``````class CataOption[T](o: Option[T]) {
def cataX(fun: ((T, T) => T))(v: T) = o.cata(m => fun(m, v), v)
}
implicit def option2CataOption[T](o: Option[T]) = new CataOption[T](o)
``````

If `o` matches `Some` we return the function with the value of `o` and the second parameter applied, if `o` matches `None` we only return the second parameter.

And here we go:

``````amt |> floor.cataX(_ max _) |> cap.cataX(_ min _)
``````

Maybe they already have this in Scalaz…?

score:0

I'm adding another answer which was inspired by both retronym and Debilski - basically it amounts to converting the cap and floor to functions (`Double => Double`, if they are present) and then folding the identity function through them with composition:

``````def restrict(floor: Option[Double], cap: Option[Double], amt: Double) = {
(identity[Double] _ /: List(floor.map(f => (_: Double) max f), cap.map(c => (_: Double) min c)).flatten){ _ andThen _ }(amt)
}
``````

score:0

Straightforward solution with plain Scala and anonymous lambda, without any mappings, folds, Double.{Min/Max}Value, and so on:

``````def restrict(floor : Option[Double], cap : Option[Double], amt : Double) : Double =
((x:Double) => x min cap.getOrElse(x))(amt max floor.getOrElse(amt))
``````

score:0

I like the initial solution with the match-case most - beside the fact, that I didn't understand that `amt` means `amount` (in Germany, 'amt' means 'office') and I only knew `cap` as something I wear on my head ...

Now here is a really uninspired solution, using an inner method:

``````def restrict(floor : Option[Double], cap : Option[Double], amt : Double) : Double = {
def restrict (floor: Double, cap: Double, amt: Double) =
(floor max amt) min cap
var f = floor.getOrElse (amt)
val c = cap.getOrElse (amt)
restrict (f, c, amt)
}
``````

score:1

This is another way to fix Landei's first answer

``````def restrict(floor : Option[Double], cap : Option[Double], amt : Double) : Double = {
val chopBottom = (floor.getOrElse(amt) max amt)
chopBottom min cap.getOrElse(chopBottom)
}
``````

score:2

This isn't really much easier in Scalaz than in regular Scala:

``````def restrict(floor: Option[Double], cap: Option[Double], amt: Double) =
floor.map(amt max).orElse(Some(amt)).map(x => cap.map(x min).getOrElse(x)).get
``````

(Add `_` after `max` and `min` if it makes you feel better to see where the parameter goes.)

Scalaz is a little easier to read, though, once you understand what the operators do.

score:2

I find that when a question asks to use an `Option` to indicate an optional parameter, there's usually a more natural way to represent the missing parameter. So I'm going to change the interface a little here, and use default arguments to define the function and named parameters to call the function.

``````def restrict(amt:Double,
floor:Double = Double.NegativeInfinity,
cap:Double=Double.PositiveInfinity):Double =
(amt min cap) max floor
``````

Then you can call:

``````restrict(6)
restrict(6, floor = 7)
restrict(6, cap = 5)
``````

score:2

This is based on Ken Bloom's answer:

``````sealed trait Constrainer { def constrain(d : Double) : Double }

trait Cap extends Constrainer
trait Floor extends Constrainer
case object NoCap extends Cap { def constrain(d : Double) = d }
case object NoFloor extends Floor { def constrain(d : Double) = d }
implicit def d2cap(d : Double) = new Cap { def constrain(amt : Double) = d min amt }
implicit def d2floor(d : Double) = new Floor { def constrain(amt : Double) = d max amt }

def restrict(amt : Double, cap : Cap = NoCap, floor: Floor = NoFloor) : Double = {
cap.constrain(floor.constrain(amt))
//or (cap.constrain andThen floor.constrain) amt
}
``````

It ends up with writing code like this:

``````restrict(amt, cap = 5D)
restrict(amt, floor = 0D)
``````

I think that's pretty awesome and doesn't suffer from the problem with Ken's solution (in my opinion), which is that it is a hack!

score:4

``````//WRONG
def restrict(floor : Option[Double], cap : Option[Double], amt : Double) : Double =
(floor.getOrElse(amt) max amt) min cap.getOrElse(amt)
``````

Second try:

``````def restrict(floor : Option[Double], cap : Option[Double], amt : Double) : Double =
floor.map(f => f max _).getOrElse(identity[Double] _)(
cap.map(c => c min _).getOrElse(identity[Double] _)(amt))
``````

Looks a little bit too "lispy" for my taste, but passes the tests :-)

[2nd Edit]

The first version can be "repaired", too:

``````def restrict(floor: Option[Double], cap: Option[Double], amt: Double): Double =
(floor.getOrElse(-Double.MaxValue) max amt) min cap.getOrElse(Double.MaxValue)
``````

score:4

Not prettier, not much shorter, and certainly not faster! But it is more composable more generic and more "functional":

EDIT: made the code fully generic :)

``````def optWith[T](a: Option[T], b: T)(op:(T,T)=>T) =
a map (op(b,_)) getOrElse b

def optMin[T:Numeric](a: Option[T]) =
(b:T) => optWith(a, b)(implicitly[Numeric[T]].min)

def optMax[T:Numeric](a: Option[T]) =
(b:T) => optWith(a, b)(implicitly[Numeric[T]].max)

def restrict[T,FT,CT](x:T, floor:Option[FT], ceil:Option[CT])
(implicit ev:Numeric[T], fv:FT=>T, cv:CT=>T) =
optMin(ceil map cv) compose optMax(floor map fv) apply(x)
``````

UPDATE 2: There's also this version, taking better advantage of `Numeric`

``````def optWith[T](a: Option[T])(op:(T,T)=>T) =
(b:T) => a map (op(b,_)) getOrElse b

def restrict[T,FT,CT](x:T, floor:Option[FT], ceil:Option[CT])
(implicit n:Numeric[T], fv:FT=>T, cv:CT=>T) =
optWith(ceil map cv)(n.min) compose optWith(floor map fv)(n.max) apply(x)
``````

I hope you like type signatures :)

UPDATE 3: Here's one that does the same with bounds

``````def optWith[T, V <% T](op:(T,T)=>T)(a: Option[V]) =
(b:T) => a map (op(b,_)) getOrElse b

def restrict[T:Numeric, FT <% T, CT <% T]
(floor:Option[FT], ceil:Option[CT], amt:T) = {
val n = implicitly[Numeric[T]]; import n._
optWith(min)(ceil) compose
optWith(max)(floor) apply(amt)
}
``````

If nothing else... this shows quite clearly why import parameters would be a Good Thing(tm). Imagine if the following was valid code:

``````def optWith[T, V <% T](op:(T,T)=>T)(a: Option[V]) =
(b:T) => a map (op(b,_)) getOrElse b

def restrict[import T:Numeric,FT <% T,CT <% T]
(floor:Option[FT], ceil:Option[CT], amt:T) = {
optWith(min)(ceil) compose
optWith(max)(floor) apply(amt)
}
``````

UPDATE 4: Turning the solution upside down here. This one offers some more interesting possibilities for future extension.

``````implicit def optRhs[T:Ordering](lhs:T) = new Object {
val ord = implicitly[Ordering[T]]; import ord._

private def opt(op: (T,T)=>T)(rhs:Option[T]) =
rhs map (op(lhs,_)) getOrElse lhs

def max = opt(ord.max) _
def min = opt(ord.min) _
}

def restrict[T : Ordering](floor:Option[T], cap:Option[T], amt:T) =
amt min cap max floor
``````

With any luck, I'll inspire someone else to build a better solution out of mine. That's how these things usually work out...

score:5

``````def restrict(floor : Option[Double], cap : Option[Double], amt : Double) : Double = {
val flooring = floor.map(f => (_: Double) max f).getOrElse(identity[Double] _)
val capping  = cap.map(f => (_: Double) min f).getOrElse(identity[Double] _)
(flooring andThen capping)(amt)
}
``````

But I have the feeling I'm missing some opportunity here, so I may not be finished.

score:5

Rather than going for pure brevity, this shows how much easier composition becomes if you turn `cap` and `floor` into functions.

``````scala> val min = (scala.math.min _).curried
min: (Int) => (Int) => Int = <function1>

scala> val max = (scala.math.max _).curried
max: (Int) => (Int) => Int = <function1>

scala> def orIdentity[A](a: Option[A])(f: A => A => A): (A => A) = a ∘ f | identity
orIdentity: [A](a: Option[A])(f: (A) => (A) => A)(A) => A

scala> val cap = 5.some; val floor = 1.some
cap: Option[Int] = Some(5)
floor: Option[Int] = Some(1)

scala> val ffloor = orIdentity(floor)(max)
ffloor: (Int) => Int = <function1>

scala> val fcap = orIdentity(cap)(min)
fcap: (Int) => Int = <function1>

scala> val capAndFloor = fcap ∘ ffloor
capAndFloor: (Int) => Int = <function1>

scala> (0 to 8).toSeq ∘ (capAndFloor)
res0: Seq[Int] = Vector(1, 1, 2, 3, 4, 5, 5, 5, 5)
``````

From scalaz, I use `MA#∘`, the functor map, both as a way of using `Option.map` and `Function1.andThen`; and `OptionW#|` which is an alias for `Option.getOrElse`.

UPDATE

This is what I was looking for:

``````scala> import scalaz._; import Scalaz._
import scalaz._
import Scalaz._

scala> val min = (scala.math.min _).curried
min: (Int) => (Int) => Int = <function1>

scala> val max = (scala.math.max _).curried
max: (Int) => (Int) => Int = <function1>

scala> def foldMapEndo[F[_]: Foldable, A](fa: F[A], f: A => A => A): Endo[A] =
|    fa.foldMap[Endo[A]](a => f(a))
foldMapEndo: [F[_],A](fa: F[A],f: (A) => (A) => A)(implicit evidence\$1: scalaz.Foldable[F])scalaz.Endo[A]

scala> val cap = 5.some; val floor = 1.some
cap: Option[Int] = Some(5)
floor: Option[Int] = Some(1)

scala> val capAndFloor = List(foldMapEndo(floor, max), foldMapEndo(cap, min)) ∑
capAndFloor: scalaz.Endo[Int] = scalaz.Endos\$\$anon\$1@4352d1fc

scala>(0 to 10).toSeq.map(capAndFloor)
res0: Seq[Int] = Vector(1, 1, 2, 3, 4, 5, 5, 5, 5, 5, 5)
``````

`scalaz.Endo[A]` is a wrapper around `A => A`, there are implicit conversions in both directions. There is an instance of `Monoid` defined for `Endo[A]`, `Monoid#plus` chains the functions, and `Monoid#zero` returns the identity function. If we have a `List` of `Endo[A]`, we can sum the list and result in a single value, which can be used as `A => A`.

`MA#foldMap` maps the given function over a `Foldable` data type, and reduces to a single value with a `Monoid`. `foldMapEndo` is a convenience on top of this. This abstraction allows you to easily change from proving the cap and floor in `Option`s to any foldable type, such as a `List`.

``````val capAndFloor = Seq(foldMapEndo(List(1, 2, max), foldMapEndo(cap, min)).collapsee
capAndFloor: scalaz.Endo[Int] = scalaz.Endos\$\$anon\$1@76f40c39
``````

``````val capAndFloor = Seq((cap, min), (floor, max)).foldMap { case (a, f) => foldMapEndo(a, f) }
capAndFloor: scalaz.Endo[Int] = scalaz.Endos\$\$anon\$1@25b85c8e
``````

score:15

Not quite as terse as the scalaz version, but on the other hand, no dependencies,

``````List(floor.getOrElse(Double.NegativeInfinity), cap.getOrElse(Double.PositiveInfinity), amt).sorted.apply(1)
``````