score:134
This is a solution based on extractors which will do the class cast:
class CC[T] { def unapply(a:Any):Option[T] = Some(a.asInstanceOf[T]) }
object M extends CC[Map[String, Any]]
object L extends CC[List[Any]]
object S extends CC[String]
object D extends CC[Double]
object B extends CC[Boolean]
val jsonString =
"""
{
"languages": [{
"name": "English",
"is_active": true,
"completeness": 2.5
}, {
"name": "Latin",
"is_active": false,
"completeness": 0.9
}]
}
""".stripMargin
val result = for {
Some(M(map)) <- List(JSON.parseFull(jsonString))
L(languages) = map("languages")
M(language) <- languages
S(name) = language("name")
B(active) = language("is_active")
D(completeness) = language("completeness")
} yield {
(name, active, completeness)
}
assert( result == List(("English",true,2.5), ("Latin",false,0.9)))
At the start of the for loop I artificially wrap the result in a list so that it yields a list at the end. Then in the rest of the for loop I use the fact that generators (using <-
) and value definitions (using =
) will make use of the unapply methods.
(Older answer edited away - check edit history if you're curious)
score:2
scala.util.parsing.json.JSON
is deprecated.
Here is another approach with circe
. FYI documentation: https://circe.github.io/circe/cursors.html
Add the dependency in build.sbt
, I used scala 2.13.4, note the scala version must align with the library version.
val circeVersion = "0.14.0-M2"
libraryDependencies ++= Seq(
"io.circe" %% "circe-core" % circeVersion,
"io.circe" %% "circe-generic" % circeVersion,
"io.circe" %% "circe-parser" % circeVersion
)
Example 1:
case class Person(name: String, age: Int)
object Main {
def main(args: Array[String]): Unit = {
val input =
"""
|{
| "kind": "Listing",
| "data": [
| {
| "name": "Frodo",
| "age": 51
| },
| {
| "name": "Bilbo",
| "age": 60
| }
| ]
|}
|""".stripMargin
implicit val decoderPerson: Decoder[Person] = deriveDecoder[Person] // decoder required to parse to custom object
val parseResult: Json = circe.parser.parse(input).getOrElse(Json.Null)
val data: ACursor = parseResult.hcursor.downField("data") // get the data field
val personList: List[Person] = data.as[List[Person]].getOrElse(null) // parse the dataField to a list of Person
for {
person <- personList
} println(person.name + " is " + person.age)
}
}
Example 2, json has an object within an object:
case class Person(name: String, age: Int, position: Position)
case class Position(x: Int, y: Int)
object Main {
def main(args: Array[String]): Unit = {
val input =
"""
|{
| "kind": "Listing",
| "data": [
| {
| "name": "Frodo",
| "age": 51,
| "position": {
| "x": 10,
| "y": 20
| }
| },
| {
| "name": "Bilbo",
| "age": 60,
| "position": {
| "x": 75,
| "y": 85
| }
| }
| ]
|}
|""".stripMargin
implicit val decoderPosition: Decoder[Position] = deriveDecoder[Position] // must be defined before the Person decoder
implicit val decoderPerson: Decoder[Person] = deriveDecoder[Person]
val parseResult = circe.parser.parse(input).getOrElse(Json.Null)
val data = parseResult.hcursor.downField("data")
val personList = data.as[List[Person]].getOrElse(null)
for {
person <- personList
} println(person.name + " is " + person.age + " at " + person.position)
}
}
score:3
This is the way I do the Scala Parser Combinator Library:
import scala.util.parsing.combinator._
class ImprovedJsonParser extends JavaTokenParsers {
def obj: Parser[Map[String, Any]] =
"{" ~> repsep(member, ",") <~ "}" ^^ (Map() ++ _)
def array: Parser[List[Any]] =
"[" ~> repsep(value, ",") <~ "]"
def member: Parser[(String, Any)] =
stringLiteral ~ ":" ~ value ^^ { case name ~ ":" ~ value => (name, value) }
def value: Parser[Any] = (
obj
| array
| stringLiteral
| floatingPointNumber ^^ (_.toDouble)
|"true"
|"false"
)
}
object ImprovedJsonParserTest extends ImprovedJsonParser {
def main(args: Array[String]) {
val jsonString =
"""
{
"languages": [{
"name": "English",
"is_active": true,
"completeness": 2.5
}, {
"name": "Latin",
"is_active": false,
"completeness": 0.9
}]
}
""".stripMargin
val result = parseAll(value, jsonString)
println(result)
}
}
score:4
You can do like this! Very easy to parse JSON code :P
package org.sqkb.service.common.bean
import java.text.SimpleDateFormat
import org.json4s
import org.json4s.JValue
import org.json4s.jackson.JsonMethods._
//import org.sqkb.service.common.kit.{IsvCode}
import scala.util.Try
/**
*
*/
case class Order(log: String) {
implicit lazy val formats = org.json4s.DefaultFormats
lazy val json: json4s.JValue = parse(log)
lazy val create_time: String = (json \ "create_time").extractOrElse("1970-01-01 00:00:00")
lazy val site_id: String = (json \ "site_id").extractOrElse("")
lazy val alipay_total_price: Double = (json \ "alipay_total_price").extractOpt[String].filter(_.nonEmpty).getOrElse("0").toDouble
lazy val gmv: Double = alipay_total_price
lazy val pub_share_pre_fee: Double = (json \ "pub_share_pre_fee").extractOpt[String].filter(_.nonEmpty).getOrElse("0").toDouble
lazy val profit: Double = pub_share_pre_fee
lazy val trade_id: String = (json \ "trade_id").extractOrElse("")
lazy val unid: Long = Try((json \ "unid").extractOpt[String].filter(_.nonEmpty).get.toLong).getOrElse(0L)
lazy val cate_id1: Int = (json \ "cate_id").extractOrElse(0)
lazy val cate_id2: Int = (json \ "subcate_id").extractOrElse(0)
lazy val cate_id3: Int = (json \ "cate_id3").extractOrElse(0)
lazy val cate_id4: Int = (json \ "cate_id4").extractOrElse(0)
lazy val coupon_id: Long = (json \ "coupon_id").extractOrElse(0)
lazy val platform: Option[String] = Order.siteMap.get(site_id)
def time_fmt(fmt: String = "yyyy-MM-dd HH:mm:ss"): String = {
val dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
val date = dateFormat.parse(this.create_time)
new SimpleDateFormat(fmt).format(date)
}
}
score:5
val jsonString =
"""
|{
| "languages": [{
| "name": "English",
| "is_active": true,
| "completeness": 2.5
| }, {
| "name": "Latin",
| "is_active": false,
| "completeness": 0.9
| }]
|}
""".stripMargin
val result = JSON.parseFull(jsonString).map {
case json: Map[String, List[Map[String, Any]]] =>
json("languages").map(l => (l("name"), l("is_active"), l("completeness")))
}.get
println(result)
assert( result == List(("English", true, 2.5), ("Latin", false, 0.9)) )
score:7
I tried a few things, favouring pattern matching as a way of avoiding casting but ran into trouble with type erasure on the collection types.
The main problem seems to be that the complete type of the parse result mirrors the structure of the JSON data and is either cumbersome or impossible to fully state. I guess that is why Any is used to truncate the type definitions. Using Any leads to the need for casting.
I've hacked something below which is concise but is extremely specific to the JSON data implied by the code in the question. Something more general would be more satisfactory but I'm not sure if it would be very elegant.
implicit def any2string(a: Any) = a.toString
implicit def any2boolean(a: Any) = a.asInstanceOf[Boolean]
implicit def any2double(a: Any) = a.asInstanceOf[Double]
case class Language(name: String, isActive: Boolean, completeness: Double)
val languages = JSON.parseFull(jstr) match {
case Some(x) => {
val m = x.asInstanceOf[Map[String, List[Map[String, Any]]]]
m("languages") map {l => Language(l("name"), l("isActive"), l("completeness"))}
}
case None => Nil
}
languages foreach {println}
score:13
I like @huynhjl's answer, it led me down the right path. However, it isn't great at handling error conditions. If the desired node does not exist, you get a cast exception. I've adapted this slightly to make use of Option
to better handle this.
class CC[T] {
def unapply(a:Option[Any]):Option[T] = if (a.isEmpty) {
None
} else {
Some(a.get.asInstanceOf[T])
}
}
object M extends CC[Map[String, Any]]
object L extends CC[List[Any]]
object S extends CC[String]
object D extends CC[Double]
object B extends CC[Boolean]
for {
M(map) <- List(JSON.parseFull(jsonString))
L(languages) = map.get("languages")
language <- languages
M(lang) = Some(language)
S(name) = lang.get("name")
B(active) = lang.get("is_active")
D(completeness) = lang.get("completeness")
} yield {
(name, active, completeness)
}
Of course, this doesn't handle errors so much as avoid them. This will yield an empty list if any of the json nodes are missing. You can use a match
to check for the presence of a node before acting...
for {
M(map) <- Some(JSON.parseFull(jsonString))
} yield {
map.get("languages") match {
case L(languages) => {
for {
language <- languages
M(lang) = Some(language)
S(name) = lang.get("name")
B(active) = lang.get("is_active")
D(completeness) = lang.get("completeness")
} yield {
(name, active, completeness)
}
}
case None => "bad json"
}
}
score:24
This is the way I do the pattern match:
val result = JSON.parseFull(jsonStr)
result match {
// Matches if jsonStr is valid JSON and represents a Map of Strings to Any
case Some(map: Map[String, Any]) => println(map)
case None => println("Parsing failed")
case other => println("Unknown data structure: " + other)
}
Source: stackoverflow.com
Related Query
- How to parse JSON in Scala using standard Scala classes?
- How to parse a JSON Scala without case classes
- how to parse json to keys value pair using scala
- How to parse a nested JSON available in a Hive/Hbase column using spark scala
- How can I construct and parse a JSON string in Scala / Lift
- How to load JSON file using Play with Scala
- How to parse and extract information from json array using json4s
- How to add a json object in to a json array using scala play?
- Scala Dynamic Parse Json using case class No Manifest available for T
- How to parse JSON with variable keys in Scala Play?
- How to read json data using scala from kafka topic in apache spark
- How can I deserialize from JSON with Scala using *non-case* classes?
- Parse JSON array using Scala Argonaut
- how to parse generic case class fields using scala option parser?
- How to parse json list or array in scala for play framework 2.2
- How do I catch json parse error when using acceptWithActor?
- Using Scala 2.10 implicit classes to convert to "built-in" standard library classes
- Parse Complex JSON in SCALA using spray-json
- How can I parse a json and extract to different case classes depending of its content
- How to specify only particular fields using read.schema in JSON : SPARK Scala
- How do I parse a deeply nested JSON document that may have some missing or extra fields using Scala?
- How do I parse a mutableList in scala as JSON on play framework 2.0?
- How do I parse xml into "messages" and print them out in scala using stream parsing?
- How to parse an array of json in scala play framework?
- How to write idiomatic Scala wrapper classes to represent non idiomatic JSON
- How to parse a JSON object (which is a list) into simple Scala class objects in scala?
- How to represent dynamic JSON keys in Scala when using circe
- How to parse Json data returned from a HTTP request in scala
- How to create nested json using Apache Spark with Scala
- Scala - how to take json as input arguments and parse it?
More Query from same tag
- Creating a jar file from Scala project without using Sbt or Maven
- Scala: Read some data of an Enumerator[T] and return the remaining Enumerator[T]
- How to convert a case-class-based RDD into a DataFrame?
- Nesting CRUD paths in akka-http directives
- How to parse column (with list data) within a DataFrame?
- Scala | what is the difference between '<-', '->' and '=>' operators and how do they work implicitly?
- Spark replace characters AąCć
- how to fix exception Problem Of MathCalculationException?
- How to catch future failed exception in stream
- Spark Hbase connector (SHC) is not returning any data from HBase table
- security exception connecting spark master java
- Exceptions Thrown by Await#result
- How to negate types in pattern match in Scala?
- "eval" in Scala
- Why can't scala find what sbt can?
- Slick: CRUD extension: How to encapsulate implicit mapping:BaseColumnType[T]
- What is purpose of anorm's Pk?
- Sharing code between Play and Console app in scala
- Finding max (& min) among values of specific index in a series of arrays that are the values of a map
- Scala. The best way to unwrap Option[Future[T]]
- Read multiple text files simultaneously in Scala
- Spark convert column filed type which is in Json to multiple rows or nested rows
- Squeryl JDK 1.8
- Play! 2.1 sbt publish a dist cycle in tasks error
- How to insert only some fields to hive table, reusing existing table schema?
- Selectively uppercasing a string
- Scala: pattern matching over a reflect.runtime.universe.Type?
- StackOverflowError with Scala on IntelliJ
- How to use sbtosgi to generate osgi bundle as part of sbt publish task
- Spark udf error task not serializable (scala)