score:2

You need to split your array into rows and cols and then find intersection for each point. A very basic algorithm for point intersection looks like this:

``````function calculateIntersectionPoint(line1StartX, line1StartY, line1EndX, line1EndY, line2StartX, line2StartY, line2EndX, line2EndY) {
// if the lines intersect, the result contains the x and y of the intersection (treating the lines as infinite) and booleans for whether line segment 1 or line segment 2 contain the point
var denominator, a, b, numerator1, numerator2, result = {
x: null,
y: null,
onLine1: false,
onLine2: false
};
denominator = ((line2EndY - line2StartY) * (line1EndX - line1StartX)) - ((line2EndX - line2StartX) * (line1EndY - line1StartY));
if (denominator == 0) {
return result;
}
a = line1StartY - line2StartY;
b = line1StartX - line2StartX;
numerator1 = ((line2EndX - line2StartX) * a) - ((line2EndY - line2StartY) * b);
numerator2 = ((line1EndX - line1StartX) * a) - ((line1EndY - line1StartY) * b);
a = numerator1 / denominator;
b = numerator2 / denominator;

// if we cast these lines infinitely in both directions, they intersect here:
result.x = line1StartX + (a * (line1EndX - line1StartX));
result.y = line1StartY + (a * (line1EndY - line1StartY));
/*
// it is worth noting that this should be the same as:
x = line2StartX + (b * (line2EndX - line2StartX));
y = line2StartX + (b * (line2EndY - line2StartY));
*/
// if line1 is a segment and line2 is infinite, they intersect if:
if (a > 0 && a < 1) {
result.onLine1 = true;
}
// if line2 is a segment and line1 is infinite, they intersect if:
if (b > 0 && b < 1) {
result.onLine2 = true;
}
// if line1 and line2 are segments, they intersect if both of the above are true

return result;
};
``````

A working demo can be found at https://jsfiddle.net/8gguunnq/1/

where on intersection point a circle has been drawn. If you want to omit boundary condition then change the loop restricting as https://jsfiddle.net/8gguunnq/2/